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In this article, it is shown that the cyclic convolution of complex values can be per-
formed by a hybrid transform. This transform is a combination of a Winograd transform
and a fast complex integer transform developed previously by the authors. This new
hybrid algorithm requires fewer multiplications than any previously known algorithm.

I. Introduction

Several authors (Refs. 1-9) have shown that transforms
over finite fields or rings can be used to compute circular con-
volutions without round-off error. Recently, Agarwal and
Cooley (Ref. 10) used the techniques of Winograd (Refs. 11,
12) to compute cyclic convolutions. These new algorithms for
convolutions of a few thousand points require substantially
fewer multiplications than the conventional FFT algorithm
(Ref. 13).

Previously the authors (Ref. 5) defined a class of Fourier-
like transforms over the complex integers modulo ¢. This was
a transform over the Galors field GF(g?), where ¢ =2P-1isa
Mersenne prime for p =2, 3,5,7,13,17,19,31,61,...Re-
cently these complex integer transforms were specialized to a
transform length of d points, where d18p (Ref. 8). The advan-
tage of the latter transform over others is that it can be accom-
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plished completely by circular shifts, i.e., no multiplications
are needed (Ref. 8).

In this article, it is shown that Winograd’s algorithm (Ref.
11) can be combined with the above-mentioned complex inte-
ger transform over GF(g?) to yield a new algorithm for com-
puting the discrete cyclic convolution of complex number
points. By this means a fast method for accurately computing
the cyclic convolution of a sequence of complex numbers for
long convolution lengths can be obtained. This hybrid algo-
rithm is comparable in speed to that given by Agarwal and
Cooley (Ref. 10) and is implemented readily on a digital com-
puter. The dynamic range requirements for this hybrid algo-
rithm are presented here in detail.

Il. Cyclic Convolution

The following algorithm for the cyclic convolution of two
sequences is based on ideas given by Winograd (Ref. 11). Let
the field of rationals be R. Also let X(u) =x, +x u +x,u? +



et xnu"‘l, Y(u) =Yo +y1u+y2u2 IR +ynun—1 be two
polynomials over R. The product T(x) = X(u) * Y(u) can be
computed by

2n-2

Tu)=X() - Y@mod JT (u-a) )

=0

where o; € R. It is shown in Ref. 11 that a minimum of 2n-1
multiplications are needed to compute (1).

It is readily shown that the cyclic convolution of X(u) and
Y(u) is the set of coefficients of the polynominal

T'w)=X(u) « Y@) mod (" - 1)

Let the polynomial u” - 1 be factored into irreducible rela-
tively prime factors, i.e.,

Kk
u- 1= H gAu)
=1

where (g{u), gi(u)) = 1 for i#]. Then T'(u) mod g{u) fori =
1,2, ...,k can be computed using Eq. (1). Finally, the Chi-
nese remainder theorem is used to evaluate T'() from these
residues. The above summarizes Winograd’s method for per-
forming a cyclic convolution.

The following theorem is due to Winograd (Ref. 11).

Theorem 1: Let @ and b be relatively prime positive integers
and A be the cyclic ab X ab matrix, given by

A(x, y)=f(x +ymoda * b), 0<x,y<ab
If 7 is a permutation of the set of integers {0, 1,...,ab -1},
let

B(x, y) = A(m(x), 7(»))

Then there exists a permutation 7 such that, if B is parti-
tioned into b X b submatrices, each submatrix is cyclic and
the submatrices form an ¢ X a cyclic matrix.

It was shown previously (Refs. 10, 12) that the number of
multiplications needed to perform a circular convolution of 3,
5. 7, and 9 points of complex numbers is 4, 10, 19, and 22
multiplications, respectively. In order to compute the cyclic

convolution of two longer sequences of complex integers, a
d-point transform over GF(g?), where ¢ = 2P - 1 and d|8p,
will be utilized here. Since the latter transform can be evalu-
ated without multiplications (Ref. 8) , it can be used with con-
siderable advantage to compute a cyclic convolution of two
d-point complex number sequences. The number of complex
integer multiplications required to perform this circular convo-
lution over GF(q?) is precisely d, the number of multiplica-
tions needed to multiply together the transforms of the two
sequernces.

For the moment, let d, the transform length, be an arbi-
tary integer. Next letd =p, * p, ...p, be the factorization of
d into prime integers. If one letsa, =p, * p, ...p,_; and
b, = p,, then by Theorem 1, ad X d cyclic matrix can be par-
titioned into % = p2 matrices of size a; X a,. Next let a; =
a, X by, wherea, =p, ...p,_,andb,=p, ,.1fa,isnota
prime, then each a, X a, cyclic matrix can be partitioned into
b3 matrices of size ¢, X a,. In general,a; =a,,; X b, ,, where
by, isaprime. If a;,., # 1, then each a; X g; cyclic matrix can
be partitioned into b2, | matrices of size a;,; X a;, ;. Other-
wise, the procedure terminates. If the number of multiplica-
tions used to compute the cyclic convolution of p; points is
m, fori=1,2,...,r, then Winograd has shown (Ref. 10) that
the number of multiplications needed to compute a d-point
cyclic convolution isequal toN =m, = m, ...m,.

It is necessary to choose only certain values of d as the
transform length in order to combine the Winograd transform
with the fast complex integer transform over GF(q?), where
q = 2P - 1 is a Mersenne prime. For this purpose, let the num-
ber d have the form

d=a-2"+p (2)

where m=0,1,2,3and a =3, 5,7, or 9. For most practical
applications, it suffices in (2) to let p = 31 or 61.

If d, the transform length of the cyclic convolution, is given
by (2), then by Theorem 1, there exists a permutation of rows
and columns so that the cyclic d X d matrix can be partitioned
into blocks of (27 -+ p) X (2 - p) cyclic matrices in such a
manner that the blocks form an a X a cyclic matrix. Now the
cyclic convolutions of @ =3, 5, 7, or 9 complex number points
can be accomplished by Winograd’s algorithm. Since 2™ -
plg? - 1 form =0, 1,2, 3, a transform of length 2" « p over
GF(g?) can be found and used to compute the cyclic convolu-
tion of the 2™ -+ p complex number points. The number of
multiplications needed to perform this convolution is 2 « p.
Using this and the number of multiplications needed for Wino-
grad’s algorithm, the total number of multiplications needed
to perform a convolution of d complex number points can be
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computed. The results of this computation are shown in
Table 1. The present algorithm, and Agarwal and Cooley’s
algorithm are compared in this table by giving the total num-
ber of complex number multiplications required to perform
the different algorithms.

It was shown above that Winograd’s algorithm can be com-

bined with a transform over GF(q?) to yield a new rather fast -

hybrid algorithm for computing the cyclic convolution of
complex values. In this algorithm it was necessary to compute
the cyclic convolution of 2 - p complex number points for
m = 0, 1, 2, or 3. This cyclic convolution of two d-point se-
quences of complex number points is

d-1

Ck :2 enf(k—n) (3)

n=90

where d18 * p and (k - n) denotes the residue of kK - » mod d.
To compute this convolution the components of the truncated
complex numbers e, and f,, must be converted first to integers
a,, and b, with dynamic ranges, say, 4 and B, respectively.
Previously (Ref. 35), a sufficient dynamic range constraint for
A and B was shown to be

qg-1
R ———
A 4Bd )
If A = B, (4) reduces to
4< [ 9;—1] (5)
4d

where [x] denotes the greatest integer less than x.

If the circular convolution of a,, and b, is denoted by c;(
fork = 0,1,2,...,d~ 1, then using the procedure described
in the example of Ref. 5, c;( can be obtained by using fast
transforms over GF(g?). In (3), ¢, can be obtained by scaling
back c;c into the scale of the original complex numbers for k =
0,1,2,...d~- 1.Evidently, the only error made in this com-
putation of the c;cs is the truncation error.

The dynamic range constraint A of the input sequence
given in (5) is generally very pessimistic. By an argument simi-
lar to that used for integer convolutions (Ref. 14), one can
lessen the severity for this dynamic range constraint and still
maintain ¢, in the interval (g - 1)/2 with a smalf probability
of overflowing. This assertion is justified in the Appendix.

To illustrate this new hybrid algorithm, consider the follow-
ing example.
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Fxample: Let d = 6. Next suppose that the input function
defined by

a =1+10  n=0,1

is convolved with itself. This convolution is
5
Cr = E anb(k—n)
n=0

where (x) denotes the residue & - # of modulo 6. This convo-
lution can be written in matrix form as

o aga,a,4,4a,4d, bo
‘ a,a,a,a,4a,4d, 1)5
c, ay,aja,a,4a,4, b4
€ i aja,a.a,4, 4, b3
, a,a., 4,4, a,4d, b2
€y aga,a a,a,4, bl

By Theorem 1, there exists a permutation 7 of rows and col-
umns so that the above cyclic matrix can be partitioned into a
2 X 2 block matrix of 3 X 3 cyclic blocks as follows:

< a,a,a,a,a, 4 b0
¢, a,d,a,4d, a.da, b2
c, a,a,4,4,a,4a, b4
y aja,a,4a,a,4, b3
¢, a,a,a5a,4,4, b5
Cs agaya a,agd, bl



This matrix equation has the form

It

where
N €, bo b3
Y]= c, ,Y2= ‘ ,X1= b2 ,X2= b5 ,
¢, Cg b4 b1
g4 4, a34d, 44
A= a,a,a, 1, B= a,4.a,
a,a,4, agaya,
Thus
Y1 (A+B)(Xl+X2)+(A—B)(X1—X2)
:2'—l
Y2 (A+B)(X1+X2)—(A—B)(X1-X2)
D+FE
=27! ©)
D-F

where D= (4 +B) (X, + X,), E=(4 - B) (X, - X,). Now

a0+a3,a4+al,a2+a5 b0+b3
D= a, ta,a,ta, a,+ta, b2+b5
a,tag,a,ta,a, ta b4+b]

1 1 0 I
=|1 0 1 0 (7)
0 1 1 1

Letxy,=1,x, =0,x,=1landy,=0,y, =1,y, = 1. Then the
matrix equation defined in (7) can be obtained by computing
the convolution of the two sequences a,, and b,,. To do this,
use a transform over GF(g?). In order to avoid overflow, one
needs to choose g =7 so that the integer components of a,,,
b, lie in the interval £1.

Since 2 is a 3rd root of unity, the transform over GF(7?) of

X, 18

3-1
_ nk _ A0 2k
Xk E xn2 29 +2

n=0

for k=0,1,2

Thus,XO =2,X1 =5,X2=3.

Similarly, the transform of sequence v, is

3-1
Yk=z y 2" =2k 422k fork=0,1,2
n=0

Thatis, Y, =2,Y,=6,Y,=6.ButD, =X, Y, ie,D,=4,
D, =2,D, = 4. These are the only complex integer multiplica-
tions needed to perform this transform. The inverse transform
of D is

=54 +2+27%+4-2?%) mod7 fork=0,1,2

since 371=5 mod 7. Thus finally, d, =1,d, =2,d; = 1.

In a similar fashion, matrix £, given in (6), can also be ob-
tained as e; = 1, e, =-2,e, = 1. Thus, by (6), one obtains
finally ¢, = 1, ¢, =2,¢,=1,¢5=0,¢,=0and ¢, =0.
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Table 1. Complexity of New Algorithm for the Convolution of
Complex Number Points

No. Complex Number
Multiplications of
No. Complex Number Agarwal and Cooley’s

d Factors Multiplications Algorithm
120 560
124 4x 31 124

210 1520
244 4x 61 244

248 8 X 31 248

420 3800
488 8 X 61 488

744 3 x 248 992

840 10640
1260 20900
1464 3 X 488 1952
2520 58520
3720 3X 5X 248 9920

7320 3X 5X 488 19520




Appendix A

A Probabilistic Dynamic Range Constraint for the Transform Over GF(qZ)

Let a,, = a, +?Bn and b, = x,, + 3':\2". Then the cyclic con-

volution of @, and b,, is given by
d-1
¢ = D, (o, +B) (x, +10,)
n=0

(A-1)

d-1 d-1
DR
n=0 n=0

where u, =d x, - 8,»v,. v, = oy, +8,x,. In many applica-
tions, the sequences «,, 8,,,X,,, and y,, can be regarded as mu-
tually independent. With this assumption, consider the sum

d-1

SMZZ“n

n=0
in (A-1). The expected value of y,, is given by
E(u,)=Ea,) ECx,) - EB,) EQ,)

where £ denotes the expected value operator. With no loss
of generality, the means of « , 8, x,, and y, can be
assumed to be zero. With these assumptions, £(u,,) = 0, and
the variance 0;2: of w,, is given by

o2 =E@l)= E@)EGL)+E@2)EG?) (A

Finally, assume that o, and §,, are uniformly distributed over
the dynamic range A, and that x, and y, are uniformly dis-
tributed over the dynamic range B.

oy = fgty = A2
@)= E@) =55
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and
B2
G2 =E(2) ="
12
Substituting these values in A-2,

A?RB?
122

2_ . -
0, =2 (A-3)

Now by the central limit theorem (Ref. 15), the probability
of exceeding a threshold X is

S
Pl—E >

Vo,

=2(1- o)

where p(A) is the standard normal distribution. This equation
can be written as

P : IS, 1> )\\/Foﬂ =2(1 - o(\) (A-4)
To keep S, from overflowing, one needs the inequality
s 1< 2t
Hence if one sets
Ao, = 41 (A-5)

then (A-4) is the probability of overflow.

For example, if A = 3, then the probability of overflowing is



P ; s, 1> M du ; =2(1 - ¢(3)) = 0.0026
which is very small. Substituting (A-3) into (A-5) yields

4.p=ll@-1
2d\

(A-6)

Equation (A-0) is the required relation among the parameters
A, B, g, d, and A. Similarly, one obtains the same result
defined in (A-6) for the sum

0
L

S
il
o

Let 2%1 and 2%2 be binary scale factors for a, and b, re-
spectively. Then since

k k
-2k <a B, <201

-2k2 <xn,yn <2k2

the dynamic ranges A and B are 251%1 and 252%! | respec-
tively. For most applications the two Mersenne prime 231 - |
and 26! - | will provide enough bit accuracy and dynamic
range for computing two 2™ -« p-point sequences of complex
numbers. To illustrate this, if d is chosen to be d =28, A = 3,
q=23"' - land k; =k,, then by (A-6)

6(q - 1)

v 2d\

A:7k1+1: ,-:\,214

Thus one needs approximately &k, = k, =13 bits to satisfy
(A-4) with an overflow probability equal to 0.0026. Thisis a
considerably better bound than one obtains using formula (5)

for 4. In fact, the dynamic range constraint (5) yields 4 =
2k =710,
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